
PRACTICAL METHODS FOR ESTIMATING SOFTWARE SYSTEM FAULT
CONTENT AND LOCATION

Allen P. Nikora Norman F. Schneidewind John C. Munson
Jet Propulsion Laboratory Code IS/Ss Computer Science

California Institute of Naval Postgraduate Department
Technology School University of Idaho

Pasadena, CA 91 109-8099 Monterey, CA 93943 MOSCOW, ID 83844-1010
Allen.P.Nikora@ipl.nasa.gov nschneid@nps.navv.mil jmunson@cs.uidaho.edu

Extended Abstract

Over the past several years, we have developed techniques to discriminate between
fault-prone software modules and those that are not, to estimate a software system's re-
sidual fault content, to identify those portions of a software system having the highest
estimated number of faults, and to estimate the effects of requirements changes on soft-
ware quality. The advantage of these techniques is that they can be applied during the
stages of a development effort prior to test. By using these techniques, software manag-
ers have greater visibility into their projects, are able to exert more accurate and precise
control over the systems for which they are responsible, and can identify and repair faults
during pre-test phases at lower cost. We describe each of these techniques below.

Classification of Quality

To classify the quality of software during the quality control and prediction process,
we have developed Boolean discriminant functions (BDFs) and Residual Critical Value
Deviation (RCVD). Using failure data from the Space Transportation System Primary
Avionics Software System (STS PASS), BDFs have been shown to provide good accu-
racy (i.e., 3% error) for classifying low quality software. This is true because the BDFs
consist of more than just a set of metrics. They include additional information for dis-
criminating quality: critical values. In forming BDFs, nonparametric statistical methods
are used to:
1. identify a set of candidate metrics for further analysis.
2. identify the critical values of the metrics. This computation is based on the Kol-

mogorov-Smirnov (K-S) test.
3. find the optimal BDF of metrics and critical values based on the ability of the BDF to

satisfy both statistical (i.e., ability to classify quality) and application (i.e., quality
achieved versus the cost to achieve it) criteria.

The RCVD is based on the concept that the extent to which a metric's value deviates
from its critical value, normalized by the scale of the metric, is an indicator of the degree
to which the entity being measured does not conform to a specified norm. For example,
the extent to which body temperature exceeds 98.6 degrees Fahrenheit is an indicator of
the deviation from an established norm of human health. Measurement involves using
surrogates: the deviation in temperature above 98.6 degrees is a surrogate for fever.
Similarly, the RCVD is a surrogate for the extent that the quality of software deviates

mailto:Allen.P.Nikora@ipl.nasa.gov
mailto:nschneid@nps.navv.mil
mailto:jmunson@cs.uidaho.edu

from acceptable norms (e.g., zero discrepancy reports). An important aspect of software
measurement is that surrogate metrics are needed to make predictions of quality early in
development before quality data are available. The RCVD’s application is in assessing
newly developed modules by their quality in the absence of quality data. In order to initi-
ate this process, a build of the software is used to validate the metrics to be applied to
later builds. During validation, critical values are estimated by an inverse Kolmogorov-
Smirnov distance criterion, as mentioned above. The validated critical values are used in
subsequent builds and can be updated, if necessary, once the quality data (e g , discrep-
ancy reports) become available.

Structural Evolution

If a software system’s structural evolutionary and failure histories during develop-
ment are available, this information can be used to construct a detailed map of the sys-
tem’s residual fault content at any point in time. We have previously shown relationships
between the measured amount of change between two successive versions of a software
module and the number of faults inserted into that module, thereby providing an estimate
of the rate of fault insertion. This lets us estimate the number of faults inserted into each
module of the system at any point during its development. The number of residual faults
in each module is computed by subtracting the number of faults known to have been re-
paired in a module (taken from the system’s failure history) from the estimated number of
faults inserted into that system. If the system’s failure history is not available, a module’s
proportional fault burden can still be computed using its measured structural evolution.
In this case, a module’s fault burden will be proportional to the total amount of change it
has received, divided by the total amount of change the system has received. Software
managers can use this information to more accurately prioritize those modules to which
fault identification and repair resources should be applied, thereby making the most ef-
fective use of their resources.

Requirements Risk

One of the problems during software maintenance is to evaluate the risk of imple-
menting requirements changes. These changes can affect the reliability and maintainabil-
ity of the software. To assess the risk of changes for the NASA Space Transportation
System flight software, the software development contractor uses risk factors, including:

Number of times the change was presented to the Change Control Board before being

0 Whether the change was on a nominal or off-nominal path
Whether the change affects an area of the software critical to mission success

0 Number and types of other requirements affected by the given requirement change

approved

The risk factors were identified by agreement between NASA and the development con-
tractor based on assumptions about the risk involved in making changes to the software.
To date this qualitative risk assessment has proven useful for identifying possible risky
requirements changes or, conversely, providing assurance that there are no unacceptable

.

risks in making a change. However, there has been no quantitative evaluation to deter-
mine whether, for example, high risk factor software was really less reliable and main-
tainable than low risk factor software. In addition, there is no model for predicting the
reliability and maintainability of the software, if the change is implemented. We are
working both of these issues. We had considered using requirements attributes like com-
pleteness, consistency, correctness, etc as risk factors. While these are useful generic
concepts, they are difficult to quantify. Although some of the risk factors also have
qualitative values assigned, there are a number of quantitative factors, and many of the
factors deal with the execution behavior of the software (i.e., reliability), which is our re-
search interest.

The Need for Tools

There are practical issues that must be addressed prior to implementing these methods on
a software development effort:
1 . Because of the volume of data involved, tools must be used to take the measurements

needed to form BDFs and RCVDs, or to measure the history of the system’s struc-
tural evolution. Although there are many tools for measuring source code during im-
plementation, the measurements taken by these tools are not standardized. For in-
stance, each tool may have a different definition of what constitutes an operator, and
of what constitutes an operand. We have developed a standard for measuring C and
C++ source code; the tool we are currently inserting into development efforts at the
Jet Propulsion Laboratory (JPL) takes measurements according to this standard.
When using this tool, we will always know how the measurements were taken, and
will better to be able to more precisely determine a particular structural characteris-
tic’s relationship to fault content.

In measuring a system’s structural evolution, it is also necessary to have a measure-
ment process that is minimally intrusive. We have found that asking developers to
perform additional activities to measure their workproducts results in incomplete, in-
consistent, and inaccurate measurements. As a solution to this problem, we have de-
veloped a set of scripts and a metrics repository that integrate with the configuration
management tool used by several development efforts at JPL. Together with the con-
figuration management policies that are being defined, the scripts will invoke the
measurement tools in a manner that is transparent to the developers and append the
measurements to the repository. The repository itself is defined and implemented in a
manner that will make it easy for developers to view the measurements and relate
those measurements to the quality of their workproducts.

2. We have found it significantly more difficult to measure artifacts produced in earlier
development phases than to measure source code. In many development efforts, we
have observed that the syntax of the notations used in producing designs and specifi-
cations is not as well defined as that of the source code, making it difficult to define a
complete or consistent set of measurements. In many cases, designs and specifica-
tions are specified in a mixture of natural language and other informal or semi-formal
notations. This compounds the problem by introducing the possibility of incompati-
bilities between the notations. To resolve this issue, we are currently investigating

c
I ’

methods of translating the outputs of some of the more popular tools for diagram-
matically representing a system’s behavior (i.e., statecharts) into forms that can easily
be measured.

3. In estimating the rate of fault insertion, it is necessary to trace repaired faults back to
their insertion point, so that a proper estimate of the fault insertion rate can be ob-
tained. However, failure histories often do not directly identify the faults that were
repaired - information is limited to a description of the erroneous behavior and identi-
fication of the modules(s) that were repaired. Calibration of the fault insertion model
requires that the fault data be at the same level of granularity as the structural infor-
mation, i.e., at the level of individual modules. Since failures can span multiple mod-
ules, the number of observed failures cannot be used as a fault count surrogate - the
underlying faults themselves must be identified and counted. Identification of faults
within a module may proceed from examining the differences between successive re-
visions of a module, provided that the faults have been repaired i n the later revision,
but not in the earlier one. This requires a taxonomy allowing us to identify faults un-
ambiguously and repeatably within these differences. During our previous work, we
defined a taxonomy based on the types of changes made to a module in response to
reported failures. We are currently refining this taxonomy and determining how it
might be formalized.

Conclusion

The above methods can make use of software measurements available prior to imple-
mentation, thereby allowing faulty modules to be identified during early development
phases. This is especially appealing since it has been repeatedly demonstrated that re-
moving faults during the latter phases of a software development effort can be one or two
orders of magnitudes more costly than removing those same faults during earlier devel-
opment phases.

Acknowledgements

The research described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology. Portions of the work were sponsored by the National
Aeronautics and Space Administration’s IV&V Facility

